自作AIによる物体間距離測定

兵庫県立神戸高等学校総合理学探求部2年9組 林祐大 坂田萌泰

研究の目的

- ・物体検出AIの製作
- ・画像内の人物間距離測定システムの製作

システム説明

- どのように距離を測定するか 測定するまでの手順
- 1.カメラで撮影した写真から自作AIで頭部 の物体検出を行う。
- 2.検出した頭部を画像内の中心座標で出力
- 3.事前に出した画像内での1座標当たりの距離から縮尺 を取り、2人のx座標、v座標の差を測定。
- 4. 三平方の定理を使用し、人物間の距離を測定。

- ・このシステム完成に必要な要素とは
 - ①頭部を物体検出するAIの作成。
 - ②距離の正確さ
 - ③一連の操作手順を行うプログラム

①頭部を検出するAIの作成

物体検出アルゴリズムyolov5を使用して、頭部が映った教室内写 真を150枚学習させた。

・どれくらい頭部を正確に検出できるだろうか

実験 I: 自作AI物体検出精度の検証

目的: 自作AIの検出精度を指標を使って調べる。

方法: 無作為な地点にいる人間の写真22枚を検出させ、次の5項 目の指標を導き正確さを調べた。

TP headと認識して、実際にheadだった。

FP headと認識して、実際にheadでない。

FN headと認識しなかったが、実際にheadであった。

結果として出るもののうち、実際出てきたものの割合。 recall =

 $precision = \frac{..}{TP + FP}$

予測がどれだけ正確化を表す値。

結果

Precisionは高いが、recallは低い値になった。

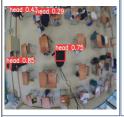


図1最も精度が良い画像

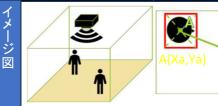
図2FPの検出例

図3FNの検出例

プラスチック箱を誤検出

	合計
映っている人	89
TP	26
FP	3
TP+FP	29
FN	63
TP+FN	89

←表1:映っている人と指標の結果


↓表2:recallとprecision

recall	0.292		
precision	0.897		

②距離の正確さ

目的:距離の正確さを検証

1.labelImgを使い、頭部の座標を測定し、事前に出した1座標あたり の長を測定する。(横540cmあたり座標616,縦270cmあたり座標47 6より、1座標あたり横0.877m, 縦0.547mである。2教室内に 図5のように地点をつけ、

 $AB = \sqrt{(Xa - Xb)^2 + (Ya - Yb)^2}$

・人の身長は

170cmに統一

カメラは魚眼カメ ラを使用

教室内で撮影す る物とする

•python使用

縦(赤線AB,EG,CD,) 横(青線IF,FH),斜め(緑線OG,OC,JD)の実際の距離と計算結果の距 離を測定。カメラの真下は点O

OA=OF=OB=1.00m OH=OJ=3.00m CD,EG,ABは平行

AB,EG,CDとHJは垂直

図4縦の縮尺計測中写真

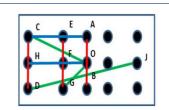
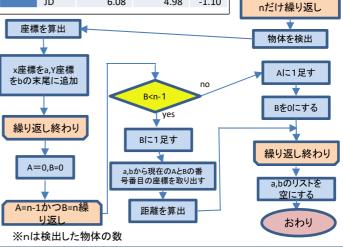


図5教室を上から見た測定地点の図


プログラム

結果:縦方向(赤線)の地点の変位は小さい。

横方向(青線)の地点の変位はカメラからの遠い方が、変位は大き

斜め方向(緑線)はカメラから遠くなるにつれて、変位は大きい。 表3実際の距離と算出結果の変位

	公0人际的起降已开出机术的发达								
	方向 の分	地	実際の距	算出結果	変位	③プログラム			
	類	点	離(m)	(m)	(m)	測定を行うプログラム			
	縦方	AB	2.00	2.02	+0.02	のフローチャート			
	向	EG	2.00	1.96	-0.04				
		CD	2.00	1.42	-0.68	(はじめ)			
	横方	IF	2.00	3.08	+1.08				
	向	FH	2.00	1.07	-0.93	_			
	斜め	OG	1.41	1.65	+0.24	a,bリスト作成			
	方向	OC	3.16	2.65	-0.51	*			
		JD	6.08	4.98	-1.10	nだけ繰り返し			
_		117217 株 7 透し							
	座標	を算出							

考察・今後の展望

recallの値が小さいのは、カメラの真下に人がいたとき、服が制服であるため 頭部との境界分かりにくいことと、学習させた人物に偏りがある可能性ある。 そのため、学習する画像の枚数を増やすべきである。実験2では、距離を細 かく区切り、地点ごとの縮尺を変えた方が良い。プログラムは、a,bのリストを リセットすることで、前のデータに影響なく、測定を行うことが可能だが、前の ータが必要な場合もあり得るため、それを保存するプログラムの作成を検 討。今後、正確な距離の計測方法リアルタイムでの検出と自作AIと距離測定 プログラムの連結化を目標としている。