Science English Final [50 pts]

Question 0 Make sure your name is on the top of your test.

Math Section [20 pts]

Question 1

Write these equations using numbers and symbols. DO NOT SOLVE THEM [3 points] *Example: three plus twenty-three minus thirteen* Answer: 3+23-13

A. fifteen divided by five

B. one-half takeaway seventy-two squared ______

C. negative four times the fifth root of two _____

Question 2

Write the r	numbers using English or	write the number from the English words. [2 points]
	Example: 252	Answer: two hundred and fifty two.
	Example: forty three	Answer: 43
984,603		
6,000,342		
Four hund twenty thre	• •	three hundred forty two thousand, eight hundred and
Ninety nin	e million and sixty seven	

Write the numbers in scientific notation or normal form [2 points]

Scientific Notation	<u>Normal Form</u>
<i>Example</i> 4.203×10^{3}	<i>Answer</i> 4,203
7.862×10^{5}	
	37,600,000
4.3×10^{2}	
	2,000,000,000

Question 4

Draw a line from the word to its correct definition. [2 points]

mean	most common measure of an average
median	difference between the largest and smallest value
mode	middle value
range	occurs the most often

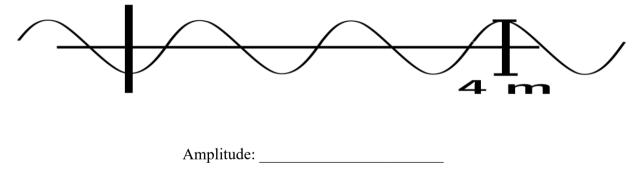
Over a period of 9 days, William eats nothing but shabu shabu. Below is a table for how many kilograms of shabu shabu he ate each day. **[5 points]**

day	1	2	3	4	5	6	7	8	9
kg of shabu	1	15	1	Q	10	10	4	25	1
shabu	4	13	4	0	10		4	23	I

a. Find the mean, median, mode, and range of the data. Use the space below to do your work. DON'T FORGET THE UNITS!!!!!!

Mean _____ Median _____ Mode _____ Range_____

b. Circle the correct answer. [1 point]


Is William eating too much shabu shabu?

A. No B. No C. No D. No

Light has a frequency of 150,000 $\frac{1}{\text{sec}}$. What is its wavelength? [2 points] $\left(c = 300,000 \frac{\text{km}}{\text{sec}}\right)$

Question 7

a. The distance from the top to the bottom of a wave is 4 meters. What is the wave's amplitude? [1 point]

b. The wavelength of this wave is four times the amplitude. It has a frequency of $1.1 \times 10^4 \frac{1}{\text{sec}}$. How fast is the wave going? [2 points]

[extra space for work]

(or, if you finish the test early, you can draw a picture of your own galaxy!)

Astronomy Section [30 pts]

Question 1

Put the following in order from smallest to largest. [2 points]

- A. Hercules-Corona Borealis Great Wall (supercluster)
- B. ants
- C. Sol (the sun)
- D. the Rigel star system
- E. Tadpole Galaxy

Smallest			Largest
	 	 	 \mathcal{O}

Question 2

a. Is a light year a distance or a time? Circle one. [0.5 points]

time distance

b. In a complete sentence, write the definition of a light year. [1 point]

a.	List 2 exam	ples of place	es that are BAE) for telescopes.	[1	point]

1._____

- 2._____
- b. List 2 examples of places <u>on Earth</u> that are GOOD for telescopes. [1 point]
- 1._____ 2.
- c. Where is the best place to put a telescope? _____ [1 point]
- d. Is Hyogo a good place to build a telescope? Why or why not? [2 points]

Question 4

- a. What do scientists call the beginning of the universe? [1 point]
- b. Circle the correct answer. [0.5 points]At the beginning of the universe, the universe was

cold, dense, and tiny. large, hot, and light. tiny, hot, and dense.

c. Circle the answer below. **[0.5 points]**

How long ago was the beginning of the universe?

A. yesterdayB. about 100 years agoC. about 300 million years agoD. about 1 billion years agoE. about 10 billion year agoF. 1 googol years ago

a. Circle the correct answer. [0.5 points]

Parallax and brightness are both methods used to measure the ______ other stars.

distance to color of speed of


b. When is the brightness method a good method to use? [1 points]

c. Below are several types of stars. Different types of stars have a different number of points. Circle all the stars below that scientists can use the brightness method on.
[1 point]

 $\Diamond \And \And \land \Diamond \Diamond \And$

- a. Put the 7 words or phrases in their correct boxes in the picture. [3.5 points]
- Words: 1. ANGLE OF CHANGE
 - 3. SUN
 - 5. SUMMER

- 2. DIFFERENT BACKGROUNDS
- 4. EARTH
- 6. TARGET STAR
- 7. DISTANCE WE WANT TO CALCULATE

b. In two to three sentences, please explain the idea of parallax. [2 points]

Question 7 Use the words to fill in the spaces in the paragraph below. [10 points]

● supercluster ●	A comet	 stars 	• space	• nebulae			
Universe	An asteroid	 heat 	 light 	• empty			
• matter •	gravitational	 galaxies 	• cold	• atoms			
Andromeda	aliens	 telescopes 	• temperature	• planets			
• energy •	ice	 Milky Way 	• dust	• nuclear			
				fusion			
The	is defined as a	all existing	and				
Most of it is	and cold. W	e study the Univers	e by using				
	to look at the		that comes to E	arth from			
space. Light is defined	l as	that we c	an see. With telesc	opes, we can			
observe other stars ins	ide the		, our home gala	xy, and we can			
also look at other		as well. For exa	mple, scientists po	inted their			
telescopes at the		Galaxy and lear	rned about how our	r closest			
neighbor galaxy will c	crash into us in 5	billion years. Scien	tists define a galax	ty as a system			
of millions and billion	s of	, together wit	th gas and				
Galaxies are held together with attraction. Inside galaxies, there							
are stars and, the latter being a collection of stars and dust that is like a							
cloud. Inside every star, the in the center are packed so tightly that their							
nuclei are joined together, fusing into heavier elements. This is called							
Your body is made of heavier elements so you are made of							
stardust! Around each star are planets, comets, and asteroids is a							
small, rocky body that orbits the sun is a large ball of							
and dust. We are lucky to live in the solar system because it has many planets that we can							
study and learn from.	I want to know is	f there are other	livi	ng in space.			
What do you want to l	xnow?						

Question 8 Circle the correct answers [1.5 points]

a. There are two big theories about the end of the Universe. One is called the Big Crunch. The name of the other, more popular theory is called

The Big Bang The Sad Cookie Heat Death Bye Bye Atoms

b. Both of these theories come from the fact that the Universe is

getting smaller expanding staying the same size

c. If the second theory is correct, the Universe will end

next Wednesday many many many many many years from now

Question 9

What was your favorite and least favorite part about this class. Please answer in complete sentences. [1 bonus point]

END OF TEST. YAY!