A study of pigment affecting colored leaves

What is colored leaves?

Japan has four seasons. Spring, summer, autumn and winter.

In autumn, the maple's color turns red and yellow from green.

Purpose

 To study how to pigment contained in leaves changed before and after leaves change color

The method of experiment

- Extract the pigment into the extraction liquid
 Ex①:methanol: acetone=3:1,
 Ex②:ethyl ether,
 Ex③:ethanol
- Compare the result of

- WWWW
- developer (<u>petroleum benzine</u>: <u>petroleum ether</u>: <u>acetone</u> =4:1:1
 - Ex2:, thin-layer chromatography

Ex13:paper chromatography

- developer (petroleum ether: <u>acetone</u>=6:4)
- Then study how leaves change their color.

Result

Green YellowRedGreen YellowRedExperiment 1Experiment 1Experiment 3MapleLeafMaple

Thin layer chromatography

Experiment 2

Chlorophyll a, b Carotene etc. Chlorophyll a, b Red leaf

WAVELENGTH

Experiment 1 Red leaf

500.0

2.00 14/01/14 15:21:13 2. [4] 1.5 1.5 100700.1. 1.0 1.00 468 UPT 0? 0.5 0.50 0.5 400 0 500.0 700.0 600.0 WAVELENGTH [nm] 0.00 400.0 0.00 400.0 800.0 7 .0 WAVELENGTH 500.0 Experiment | Yellow leaf Experiment 1 Green leaf

Green leaf Yellow leaf

Absorption spectrum about pigments of photosynthesis

Study ~about experiments~

- There are many kinds of pigment between 400nm and 500nm. So we could not distinguish pigment clearly.
- But according to the results of paper chromatography in experiment 1, we found that every leaf has carotene and xanthophylls. And we found that green leaves have a lot of chlorophyll a and b.
 - The starting point of paper chromatography of green, yellow and red leaves in experiment 1, 3, all turned red, but they did not spread out.
 - Also, the starting point of thin layer chromatography in experiment 2 did not turn red. From this, it could be inferred that the red pigment is <u>anthocyan</u>.
 - It easily melts in the extraction liquid of experiment 1, 3 or ethanol, methanol and does not melt in developer, ethyl ether which is contained in green, yellow and red leaves.
- The wave length of the spectrum graph for maple in experiment 1 was between 400nm and 500nm, which was very different from that of maple in experiment 2.
- In experiment 2, we compared the spectrum of green, yellow and red maples.
- We couldn't detect chlorophyll a and b in yellow and red maples. So, we inferred that the green pigment, <u>chlorophyll a and b</u> disappeared and the yellow pigment, <u>carotene</u> or red pigment, <u>anthocyan</u> appeared when leaves change color.

Absorption spectrum about pigments of photosynthesis

Paper chromatography

Green YellowRedGreen YellowRedGreen YellowRedExperiment 1Experiment 1Experiment 1Experiment 3MapleLeafMapleImage: Alternative structure

Thin layer chromatography

Experiment 2

The method of experiment

- Extract the pigment into the extraction liquid
 Ex①:methanol: acetone=3:1,
 Ex②:ethyl ether,
 Ex③:ethanol
- Compare the result of

- developer (<u>petroleum benzine</u>: <u>petroleum ether</u>: <u>acetone</u> =4:1:1
 - Ex2:, thin-layer chromatography

Ex13:paper chromatography

- developer (petroleum ether: <u>acetone</u>=6:4)
- Then study how leaves change their color.

Study ~after experiments~

- In autumn, trees make membranes between the branch and the leaf.
 - They stop the nutriment from running to leaves. So photosynthesis are stopped, and chlorophyll a and b are decomposed.
- Then, blood sugar react a protein, and generate <u>anthocyan</u>.

Conclusion

- Every leaf contains <u>chlorophyll a and b</u>, <u>xanthophylls</u>, <u>carotene and anthocyan</u> mainly.
- When leaves change color, chlorophyll a and b are decomposed. And the leaves turn either the yellow of carotene and xanthophylls or the red of anthocyan.
- If we had kept the concentration of pigment extraction liquid, we could have observed results more easily.

Thank you for your attention!!