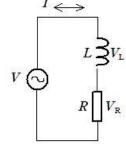
実験 交流回路(コイルと抵抗)

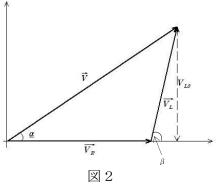
【目的】コイルの両端の電圧と流れる電流との位相が違うことを確認し、電圧、電流、 リアクタンスの間の関係を調べる。

【器具】コイル,抵抗(10Ω),デジタルマルチテスター,コード,変圧交流電源(60Hz),コンパス,分度器,電卓,定規

【方法】

(1) 下の図1のように回路を組み立て,交流電源の出力電圧を2Vに電圧つまみを合わせる。電源電圧 (V) ,コイルの両端の電圧 (V_C) と抵抗の両端の電圧 (V_R) を測る。



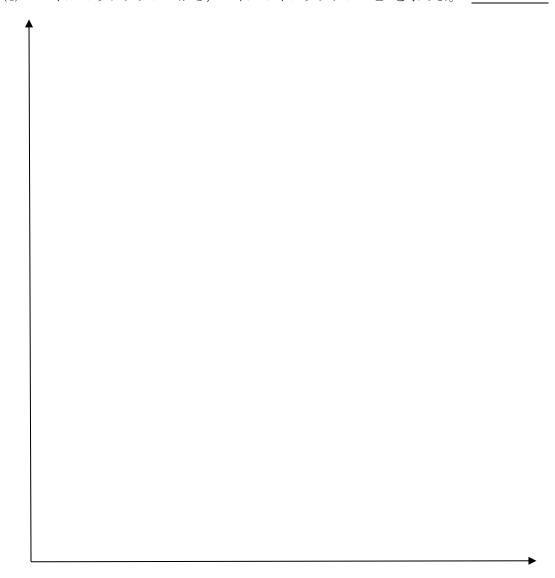

図 1

(2) これらの電圧の間に成り立つ関係を確かめる。

 $V=V_{\rm L}+V_{\rm R}$

が成り立っていないことを確認し、この関係が成り立つようにするにはどうすればよいかを考える。 ($\vec{V}=\vec{V_{\rm L}}+\vec{V_{\rm R}}$)

(3) 右の図2を参考にして \vec{V} Lと \vec{V} Rとの足し算をコンパスで作図し、 \vec{V} と \vec{V} R、の位相のずれ α を求める。



【処理】

- (1) V =______V $V_L =$ _____V $V_R =$ _____V
- (3) 抵抗Rと V_R から電流Iを求め、コイルのリアクタンスXを求めよ。

$$I = \frac{V_R}{R} =$$
 A $X_L = \frac{V_L}{I} =$ Ω

(4)	コイルのリアカ	タンスから	コイルのインダクタ	タンスI	を 求め ト

【考察】

- (1) $\stackrel{
 ightarrow}{V}=\stackrel{
 ightarrow}{V_{\rm L}}+\stackrel{
 ightarrow}{V_{\rm R}}$ にならないのはなぜか。位相のずれ(進み・遅れ)から説明せよ。
- (2) V_L と V_R との位相のずれ β が直角にならないのはなぜか。左の図2から考えよ。

|--|